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Abstract. Kink dynamics in spatially discrete nonlinear Klein–Gordon systems is considered.
For special choices of the substrate potential, such systems support continuous translation orbits
of static kinks with no (classical) Peierls–Nabarro barrier. It is shown that these kinks experience,
nevertheless, a lattice-periodic confining potential, due to purely quantum effects analogous to the
Casimir effect of quantum field theory. The resulting ‘quantum Peierls–Nabarro potential’ may be
calculated in the weak-coupling approximation by a simple and computationally cheap numerical
algorithm, which is applied, for the purposes of illustration, to a certain two-parameter family of
substrates.

1. Introduction

Many systems in condensed matter and biophysics may be modelled by infinite chains of
coupled anharmonic oscillators. If the anharmonic substrate potential has two or more
degenerate vacua, such a system may support static kink solutions interpolating between
neighbouring vacua. These kinks have various interesting physical interpretations (as crystal
dislocations [1], charge density waves [2] and magnetic [3] and ferroelectric [4] domain walls,
for example) and their dynamics is an interesting and important subject.

Such a system of oscillators has an alternative interpretation as a spatially discrete version
of an appropriate nonlinear Klein–Gordon equation. The lattice spacing h is related to the
spring constant of the chain α by α = 1/h2, so the strong spring-coupling limit is interpreted
as a continuum limit. In the continuum limit, static kinks may occupy any position in space,
by translation symmetry. This is generically untrue in the discrete system: static kinks may
generically occupy only two positions relative to the lattice, one of which is a saddle point
of potential energy, the other a local minimum. The difference in energy between these two
static solutions is the Peierls–Nabarro (PN) barrier, the barrier which a kink must surmount
in order to propagate from one lattice cell to the next. It can have strong effects on the
dynamics of kinks in the system (kink trapping, radiative deceleration, phonon bursts, etc
[5, 6]).

One might expect the PN barrier, and hence its effects, to grow monotonically with h
(of course the barrier vanishes as h → 0). However, it has long been known that this is
certainly not universally true [7]. In fact, recent work of Flach et al [8] has shown that there
exist infinitely many substrate potentials with the property that for at least one non-zero lattice
spacing, h∗ say, the PN barrier vanishes exactly and a continuous translation orbit of static
kinks is recovered. We shall say that a substrate potential with this property is ‘transparent
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at lattice spacing h∗’. Such potentials may be constructed by means of the so-called inverse
method, and are clearly of some theoretical interest.

The purpose of the present paper is to argue that although the kinks of such a system
(at h = h∗) are free of the classical PN barrier, they still experience a qualitatively similar
periodic confining potential due to quantum effects analogous to the Casimir effect of quantum
electrodynamics. We call this the quantum Peierls–Nabarro (QPN) potential. The essential
physical observation is that the total zero-point energy of the lattice phonon modes in the
presence of a kink depends periodically on the kink position. It should be emphasized that
the kink position itself is treated as a classical degree of freedom while the phonons are
quantized. The physical regime in which this is consistent will be identified: the classical
kink mass must far exceed the phonon mass, and the kink must interpolate between widely
separated vacua. For the purposes of illustration, we shall compute the QPN potential
numerically for a two-parameter family of substrate potentials which (in a sense) includes
discrete sine–Gordon and φ4 systems. As a by-product of these calculations, we will obtain
numerical evidence in favour of the assumption that kinks in these models are classically
stable.

2. Construction of transparent substrate potentials by the inverse method

The general discrete nonlinear Klein–Gordon system consists of a field φ : Z×R → R whose
evolution is determined by a second-order differential difference equation,

φ̈n = 1

h2
(φn+1 − 2φn + φn−1)− V ′(φn). (1)

Here h is the spatial lattice spacing, φ̈n = d2φn/dt2 and V is the substrate potential. One
interpretation of the equation of motion is as that of an infinite system of identical oscillators
(each oscillating in a potential well V ) with nearest neighbours coupled by identical Hooke’s
law springs of strength α = h−2. As the name suggests, equation (1) becomes a nonlinear
Klein–Gordon equation in the continuum limit, h → 0. If V (φ) has neighbouring degenerate
vacua at φ = a− and φ = a+ > a−, say, equation (1) supports static kinks interpolating
between them. To find these requires the solution of a second-order nonlinear difference
equation subject to the boundary conditions limn→±∞ φn = a±, which is usual only possible
numerically.

In this section we will construct, for a given lattice spacing h∗ > 0, a substrate potential
Vh∗(φ) which supports a continuous translation orbit of static kinks, and so by construction is
transparent at lattice spacing h∗. To do this we shall use a variant of the inverse method of Flach
et al [8, 9] (which was originally devised to construct substrate potentials which support exact
propagating, rather than static, kink solutions). The idea is to choose a static kink profile, that
is an analytic, monotonic surjection f : R → (a−, a+), satisfying exponential decay criteria
as z → ±∞,

f (z) = a± + O(e−µ|z|) µ > 0 (2)

and the symmetry requirement,

f (z) + f (−z) ≡ a+ + a− (3)

then impose that the translated kink φbn = f (nh − b) be a static solution of the system (with
h = h∗) for all b ∈ R. From equation (1), this condition holds provided one chooses Vh∗
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such that

V ′
h∗(f (z)) = 1

h2∗
[f (z + h∗)− 2f (z) + f (z− h∗)] (4)

for all z ∈ R. This uniquely determines V ′
h∗ : (a−, a+) → R by monotonicity of f , and

hence Vh∗ : (a−, a+) → R up to an arbitrary constant. To complete the definition of this
transparent substrate, one should extend its definition appropriately to all R. How one does
this is somewhat arbitrary, but will have no bearing on our results, so we shall merely demand
that Vh∗ , V ′

h∗ , V ′′
h∗ be continuous at a±. Equations (2) and (4) then imply

V ′
h∗(a±) = 0 (5)

V ′′
h∗(a±) = 2

h2∗
(coshµh∗ − 1) > 0. (6)

Hence φ = a± are both stable equilibria. To see that these are degenerate vacua, note that
from (4),

h2
∗[Vh∗(a+)− Vh∗(a−)] =

∫ ∞

−∞
[f (z + h∗)− 2f (z) + f (z− h∗)]f ′(z) dz

=
∫ ∞

−∞
[f (z + h∗) + f (−(z + h∗))]f ′(z) dz− (a2

+ − a2
−)

= (a+ + a−)[f (z)]∞−∞ − (a2
+ − a2

−)

= 0 (7)

using the symmetry constraint on f , (3).
So given a kink profile f , the inverse method generates a one-parameter family of double-

well substrate potentials {Vh∗ : h∗ > 0} each of which is transparent at spacing h = h∗.
Moreover, one has as explicit formula for the continuous translation orbit of static kink
solutions, namely φbn = f (nh∗ − b), b ∈ R. On physical grounds, one expects the static
kinks to be stable to small perturbations, although strictly speaking this is not assured. One
would need to check that the Hessian of the potential energy functional,

EP =
∑
n∈Z

[
1

2h2∗
(φn+1 − φn)

2 + Vh∗(φn)

]
(8)

about φb has a strictly positive spectrum (except for the zero-mode associated with translation).
The quantum calculation described in section 3 may be reinterpreted as the calculation of this
spectrum. The results of section 5 then constitute numerical confirmation of kink stability for
the family of transparent substrates considered therein.

3. The quantum Peierls–Nabarro potential

In this section we shall quantize the system using a weak-coupling approximation, essentially
following the method outlined in [10], adapted to the infinite lattice. The method has previously
been applied in the spatially discrete context to a certain non-standard lattice sine–Gordon
model [11].

One may regard EP as a potential energy function on the infinite-dimensional space Q
of sequences φ : Z → R. The vacua φ = a± lie at the bottom of identical potential wells,



4744 J M Speight

cut off from each other, and all configurations with kink boundary behaviour, by an infinite
energy barrier. Assuming that V is transparent at the lattice spacing under consideration (e.g.
V = Vh∗ and h = h∗, as in section 2), the continuous kink translation orbit is an equipotential
curve inQ: the classical energy of a static kink is independent of its position. If the kinks are
stable, this is a level valley bottom winding through Q.

Quantum mechanically, a particle cannot sit at the bottom of a potential well, or on the
low-dimensional floor of a valley: it always possesses a zero-point energy dependent on the
shape of the well bottom. In this section we will semiclassically quantize motion both in the
vacuum and kink sectors of the system. A physical regime will be identified in which the
kink is very heavy, so that the kink position b may be treated as a classical degree of freedom,
while the comparatively light phonon modes orthogonal to the translation mode are quantized
perturbatively, by Taylor expansion of EP . Computation of the kink ground state energy then
amounts to summing the zero-point energies of an infinite system of harmonic oscillators,
resulting in a divergent series. The quantity of physical significance is not this energy, but
rather the difference between the kink and vacuum ground state energies, which is expected
to be finite. Since translation is not a symmetry of the discrete system, there is no reason to
expect this energy to be independent of b, that is, one expects the quantum kink energy to vary
periodically with kink position, which is the origin of the quantum PN potential.

It is convenient to introduce a dimensionless coupling constant λ into the model so that
the (classical) Hamiltonian of the system is

H =
∑
n∈Z

[
1

2
π2
n +

1

2h2
(φn+1 − φn)

2 +
1

λ2
V (λφ)

]
(9)

where πn = φ̇n is the momentum conjugate to φn. Assuming that V is transparent at spacing
h, this system supports a continuous translation orbit of static kinks

φb,λn = 1

λ
f (nh− b) b ∈ R (10)

interpolating between a−/λ and a+/λ. The classical energy of these kinks is independent of b
and clearly scales with λ as

EP [φb,λ] = 1

λ2
EP [φ0,1]. (11)

The physical regime of interest is that of small λ where the kinks interpolate between
widely separated vacua, by (10), and are very heavy, by (11). In this regime, one may
approximate motion about any stable static solution φ̃ = ϕ/λ by using a truncated Taylor
series approximation for EP [φ̃ + δφ]:

EP [φ̃ + δφ] = 1

λ2
EP [ϕ] +

1

2h2

∑
n,m

Wnmδφnδφm + O(λ) (12)

where

Wnm = δnm[2 + h2V ′′(ϕ)] − δn,m+1 − δn,m−1. (13)

Since W is a real, symmetric matrix, there exists an orthogonal transformation R such that

Wnm =
∑
k,l

RTnkUklRlm (14)

with U diagonal. The diagonal entries of U are the eigenvalues !n of W , none of which
is negative provided φ̃ is stable, as we are assuming. Introducing normal coordinates
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ξn = ∑
m Rnmδφm which have conjugate momenta ηn = ∑

m Rnmπm, the Hamiltonian for
motion about φ̃ reduces to

H = 1

λ2
EP [ϕ] +

1

2

∑
n

[
η2
n +

!n

h2
ξ 2
n

]
+ O(λ). (15)

Neglecting the O(λ) remainder, this is the Hamiltonian for an infinite set of decoupled harmonic
oscillators of natural frequencies h−1

√
!n.

We now quantize in standard canonical fashion in the cases where φ̃ = a±/λ (the vacuum)
and φ̃ = φb,λ (the kink located at b). Let theW -matrices in these cases be denoted byWvac and
WK(b), respectively, with spectra {!vacn } and {!Kn (b)}. In each case, the quantum correction
to the ground state energy is the sum of the zero-point energies of the oscillators,

1

2h

∑
n

√
!n (16)

in units where h̄ ≡ 1 (recall that h denotes the lattice spacing of the system). In the case
of kinks, one should omit from this sum the eigenvalue associated with the translation mode
since, the kink being very heavy, this mode is treated classically. Actually, this makes no
difference since the corresponding eigenvalue vanishes, so one might as well sum over all
modes, including the zero mode.

Of course, the series (16) is divergent in both the vacuum and kink sectors, and must
be suitably regulated and renormalized. To this end, we truncate the lattice symmetrically
about the kink centre (so −n0 � n � n0, assuming b ∈ [0, h)) and consider the spectra
{!n(N) : n = −1 . . . , N} of the truncatedW -matrices of orderN = 2n0+1. The renormalized
ground state energy is then

E(b) = EP [φ0,1]

λ2
+ lim
N→∞

N∑
n=1

[√|!Kn (N, b)| − √
!vacn (N)

]
(17)

which one expects to be finite, given the exponential spatial localization of the kink (the
large-|n| entries of the matrix WK are essentially identical to those of Wvac). The finite size
of the lattice perturbs the translation zero mode away from zero slightly, so one of the kink
eigenvalues!n(N, b)may be negative for some (N, b) (although it must vanish as N → ∞).
This is why we have introduced an absolute value into equation (17), so that E(b) is the limit
of a real-valued sequence. In the limit N → ∞ lattice translation symmetry is recovered, so
E(b) should be periodic with period h.

4. The cosh−µ kink family

If we now choose V = Vh, for some kink profile f , we see from equations (13) and (4) that
the QPN potential depends on f only through f ′, because

2 + h2V ′′
h (f (z)) = f ′(z + h) + f ′(z− h)

f ′(z)
. (18)

For the purposes of illustration we will consider the one-parameter family

f ′(z) = 1

coshµ z
(19)
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Figure 1. Transparent substrate potentials generated by (a) the sine–Gordon kink profile (µ = 1)
and (b) the φ4 kink profile (µ = 2), with lattice spacings from h = 0.5 (bottom curve) to h = 3.0
(top curve) in steps of 0.5.

with µ > 0. Note that this includes the cases of the sine–Gordon (f (z) = 2 tan−1 ez) and
φ4 (f (z) = tanh z) kink profiles: µ = 1 and 2, respectively. The corresponding transparent
substrates in these two cases are shown in figure 1.

The neighbouring vacua a± may be any real numbers separated by

a+ − a− =
∫ ∞

−∞

dx

coshµ x
. (20)

Since f (z) has order e−µ|z| exponential decay, V ′′
h (a±) is given by equation (6), and the vacuum

W -matrix takes the simple form

Wvac
nm = 2 coshµh δnm − (δn,m−1 + δn,m+1). (21)
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The spectrum of the system truncated to N lattice sites is easily computed:

!vacn (N) = 2(coshµh− 1) + 4 sin2

(
nπ

2(N + 1)

)
n = 1, 2, . . . , N. (22)

In the limit N → ∞, the spectrum densely fills the interval [2(coshµh− 1), 2(coshµh + 1)].
The eigenvalue problem for the kink W -matrix,

WK
nm(b) = f ′(nh + h− b) + f ′(nh− h− b)

f ′(nh− b)
δnm − (δn,m−1 + δn,m+1) (23)

is intractable analytically, and will be solved numerically in section 5. One can show, however,
that the quantum kink energy is (for all b) lower than the classical kink energy, that is, the
quantum energy correction is negative. To see this, let )(b) be the real diagonal matrix

)nm(b) = h2δnm[V ′′
h (f (nh− b))− V ′′

h (a±)] (24)

so thatWK(b) = Wvac+)(b). Let {!Kn (b)}, {!vacn } and {*n(b)} be the eigenvalues ofWK(b),
Wvac and)(b), each spectrum arranged in non-increasing order (*1 � *2 � *3 � · · ·). Then
standard matrix perturbation theory [12] asserts that

!Kn (b) � !vacn + *1(b) (25)

for all n, where *1 is the greatest eigenvalue of )(b),

*1(b) = max
n
h2[V ′′

h (f (nh− b))− V ′′
h (a±)]. (26)

So if V ′′
h (f (z)) < V ′′

h (a±) for all z ∈ R then *n < 0 and the perturbation of Wvac by )(b)
must reduce each eigenvalue!Kn (b) relative to its vacuum counterpart, with the result (always
assuming kink stability) that

∑
n

(√
|!Kn (b)| − √

!vacn

)
< 0. (27)

This condition on V ′′
h (φ) (a maximum second derivative at the vacua) is quite natural, and

can easily be shown to hold for the whole cosh−µ family (µ > 0, h > 0). Note that

h2[V ′′
h (f (z))− V ′′

h (a±)] = g(z)− lim
x→∞ g(x) (28)

where

g(z) =
[

cosh z

cosh(z + h)

]µ
+

[
cosh z

cosh(z− h)

]µ
. (29)

Now g is differentiable and even, and

g′(z) = −µ sinh h coshµ−1 z

[
1

coshµ+1(z + h)
− 1

coshµ+1(z− h)

]
(30)

so the only critical point of g is z = 0, a local minimum, whence it follows that g(z) <
limx→∞ g(x) for all z.
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5. Numerical results

Since the truncated kink W -matrix WK
N (b) is real, symmetric and tridiagonal, its eigenvalue

problem is particularly easy to solve numerically. In this section we present data generated
by implementing the QL decomposition algorithm for tridiagonal matrices with implicit
eigenvalue shifts, outlined in [13].

The first thing to check is that, as expected, the spectrum ofWK(b) is positive semi-definite
with non-degenerate eigenvalue zero. The least and next-to-least eigenvalues of WK

N (b) for
N odd, 3 � N � 90 were computed for a large sample of parameter values in the range
1 � µ � 3, 0.5 � h � 10, 0 � b/h � 0.5. The results were similar at all points sampled:
the least eigenvalue converges to zero, while the next-to-least converges to a positive number
below the lower edge of the vacuum phonon band, that is, less than 2(coshµh − 1). It is
instructive to look at the build up of the spectrum ofWK

N (b) as N grows large, as depicted for
two contrasting sets of parameter values in figure 2. This clearly shows the rapid convergence of
the bottom eigenvalue to zero (convergence being faster for larger µh, since the kink structure
is then more tightly spatially localized) and the next lowest eigenvalue to a positive constant
below the phonon band. The eigenvector corresponding to the lowest positive eigenvalue is a
spatially localized mode in which the slope of the kink oscillates about the kink centre. The
rest of the eigenvalues accumulate, apparently densely, within the phonon band (delimited by
horizontal broken lines in figure 2). This is precisely the right behaviour to ensure both kink
stability and convergence of the quantum-corrected kink energy in the limitN → ∞. The size
of the truncated system needed to obtain practical convergence depends on µh, but, within the
parameter range cited above, N = 51 seems to suffice. This is the matrix order used to obtain
the remaining numerical data.

The quantity E(b) as defined in (17) is problematic to plot since it contains contributions
of different orders in λ. For this reason it is convenient to consider Ẽ(b) = E(b)−E(0), which
is of order λ0, instead. In fact, Ẽ(b) is the quantity of most direct physical significance anyway:
it gives the change in kink energy as b varies, which is precisely what is meant by the quantum
Peierls–Nabarro potential.

Figure 3 shows Ẽ(b) (0 � b/h � 1) for the sine–Gordon substrate potentials (µ = 1),
at a variety of lattice spacings. The results are qualitatively very similar to the usual classical
PN potential: the kink has greatest energy when located exactly on a lattice site (b = 0) and
least when located exactly midway between lattice sites (b = h/2), the energy difference (the
QPN barrier) growing monotonically with h.

Figure 4 shows similar plots for the φ4 substrate potentials (µ = 2). Here, once again,
kinks have greatest energy when b = 0 and least when b = h/2, but the QPN barrier
does not grow monotonically with h, nor is the shape of Ẽ(b) so uniform as in the µ = 1
case.

Similar plots for µ = 3 reveal more complicated behaviour, as shown in figure 5. For
small h, Ẽ(b) is maximum at b = 0 and minimum at b = h/2 as for µ = 1, 2. However, for
h above a critical value (∼1.46) b = 0 becomes a local minimum of Ẽ and two extra local
maxima appear. The global minimum of Ẽ remains at b = h/2, rather than b = 0, until h
exceeds about 1.52, after which Ẽ(h/2) exceeds Ẽ(0). As h is increased further, the two local
minima coalesce at b = h/2 (at h ∼ 1.7), so that the QPN potential starts to resemble an
inverted version of the µ = 1 case: now kinks have a minimum energy when located exactly
on a lattice site and a maximum energy when located exactly midway between sites. This
variation of the shape of Ẽ with h is qualitatively rather similar to the behaviour of the classical
PN potential for a particular member of a one-parameter family of substrates introduced by
Peyrard and Remoissnet [7].



A quantum Peierls–Nabarro barrier 4749

Figure 2. Build up of the spectrum of WK
N (b) as the matrix order N grows large, in the cases

(a) µ = 1.5, h = 0.5, b/h = 0.2 and (b) µ = 2.0, h = 2.6, b/h = 0. Note how the spectrum
accumulates within the vacuum phonon band, delimited by horizontal broken lines.

Periodicity and reflection symmetry of E imply that b = 0 and h/2 must always be
critical points. There may be others (as in the case µ = 3.0), but for the most part, plotting
Ẽ(h/2) = E(h/2)− E(0) against h gives a good account of how the QPN barrier varies with h
and µ. In particular, the sign of Ẽ(h/2) tells one whether the QPN barrier tends to trap kinks
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Figure 3. Position dependence of the quantum PN potential Ẽ(b) for µ = 1 and h = 1.5–5 in
steps of 0.5.

Figure 4. Position dependence of the quantum PN potential Ẽ(b) for µ = 2 and h = 2 to h = 5
in steps of 1. The unlabelled curves are h = 2 (broken) and h = 4 (full).

between lattice sites (Ẽ(h/2) < 0) or on lattice sites (Ẽ(h/2) > 0). Figure 6 shows plots of
Ẽ(h/2) against h for various µ ∈ [1, 3]. Three regimes clearly emerge for large h: 1 � µ � 2
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Figure 5. Position dependence of the quantum PN potential Ẽ(b) for µ = 3 and h = 1.4–1.6 in
steps of 0.2.

Figure 6. A rough measure of the depth of the QPN barrier: Ẽ(h/2) as a function of h for various
µ ∈ [1, 3].

(Ẽ(h/2) < 0 growing unbounded as h → ∞), µ = 2 (Ẽ(h/2) < 0 remaining bounded as
h → ∞) and 2 � µ � 3 (Ẽ(h/2) > 0 growing unbounded as h → ∞). This trichotomy may
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Figure 7. Dependence of the QPN barrier on the lattice spacing h in the critical case (µ = 2).

be explained by consideration of the asymptotic forms of WK(0) and WK(h/2) for large h:

WK(0)

eµh
∼ diag(. . . , 1, 1, 2−µ, 0, 2−µ, 1, 1, . . .) (31)

WK(h/2)

eµh
∼ diag(. . . , 1, 1, 0, 0, 1, 1, . . .). (32)

This leads to the prediction

Ẽ(h/2)
e−µh/2 ∼ 1

2h

[
(0 − 0) + (0 − 2−µ/2) + (1 − 2−µ/2) + (1 − 1) + (1 − 1) + · · ·] (33)

⇒ Ẽ(h/2) ∼ (1 − 21−µ/2)
2h

eµh/2. (34)

Formula (34) accounts well for the asymptotic behaviour seen in figure 6. Clearly the most
interesting case from this point of view is the critical value µ = 2. The dependence of Ẽ(h/2)
on h for µ = 2 is shown in figure 7. One sees that, rather counterintuitively, the QPN barrier
actually vanishes in the extreme discrete limit, h → ∞. One should remember, of course, that
in varying h one also varies the shape of the transparent substrate potential Vh (which would
not otherwise remain transparent). In fact, the limit h → ∞ is always badly singular since the
curvature of the substrate at the vacua grows unbounded, by equation (6).

6. Concluding remarks

In this paper we have considered oscillator chains with no classical PN barrier and shown
that their kinks still experience a lattice-periodic confining potential due to purely quantum
mechanical effects, leading to a new mechanism for kink pinning. The quantum PN potential
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was computed numerically for a simple two-parameter family of substrates, revealing a rich
variety of behaviour.

It remains to be seen whether the QPN potential and quantum kink pinning have any
relevance to genuine physics. Given the idealized one-dimensional nature of the model, this
seems unlikely (generalizing the inverse method to higher dimensions is very problematic).
Another cause for doubt is that the effect exists only for certain special substrates. Just how
special these ‘transparent’ substrates are is unknown. In order to have any physical relevance
they would at least have to be structurally stable: if Vh[f ] is the substrate transparent at h
generated by kink f , then given any sufficiently small perturbation δV there should exist a
kink f∗ close to f and spacing h∗ close to h such that Vh[f ] + δV = Vh∗ [f∗]. Thinking of the
inverse method as a mapping K × R+ → P (where K is the space of kink profiles and P the
space of potentials), the question is whether this mapping is continuous with respect to some
sensible choice of topologies on K and P .

Given a non-transparent substrate V (i.e. with non-vanishing classical PN barrier) it
still makes sense, in the regime of small λ, to treat the kink translation mode classically
while quantizing the normal modes. Now one should quantize not about genuine static
kink solutions, but rather about kinks solving a constrained energy minimization problem,
necessarily determined numerically. In this situation the QPN potential is a correction to the
classical PN potential. It is interesting to ask whether there exist substrates for which the two
potentials exactly cancel, so that classically pinned kinks are unpinned by quantum effects
(in contrast to the situation studied in this paper, where classically unpinned kinks are pinned
by quantum effects). Unfortunately, this question lies beyond the scope of the perturbative
methods used here. The classical PN potential, being a difference of kink masses, is order λ−2,
while the QPN potential is order λ0, with unknown higher-order terms. Even if V could be
found such that at some fixed λ the terms of order λ0 and λ−2 cancel, the higher-order terms
would still (presumably) produce kink pinning.

This paper also raises some rather more mathematical questions. We have presented
numerical evidence to support the assumption of classical kink stability, but it should be
possible to prove stability rigorously. Similarly, one should be able to prove convergence of
the series defining E(b). In both cases one needs to understand the large-N behaviour of the
spectrum of WK

N (b). Standard minimax estimates are insufficient for this purpose—a more
delicate analysis is required.
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